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Summary

What are the consequences should jellyfish consume an increasingly greater share of plankton
production? Jellyfish may play a role shaping energy flow through pelagic food webs by diverting
plankton production away from higher trophic levels. In the Northern California Current,
scyphozoan jellyfish attain high biomasses during summer months, but their abundance is variable
from year to year. Do large jellyfish blooms have an observable impact on the rest of the ecosystem?
Sensitivity analyses with an end-to-end ecosystem model of the Northern California Current were
used to examine the potential effects of increased jellyfish production upon higher trophic levels.
These analyses suggest that salmon are particularly sensitive to jellyfish blooms. Although jellyfish
and young salmon feed at different trophic levels, they may be indirect competitors for plankton
production. Pelagic surveys off Oregon and Washington were used to examine the relationship
between the dominant jellyfish (Chrysaora fuscescens) and salmon production. There was a significant,
negative correlation between C. fuscescens abundance and the strength of salmon returns to the
Columbia River in subsequent years. Further examination showed that juvenile salmon stomachs
were less full at locations with higher C. fuscescens biomass.

Materials and Methods

Using both ecosystem model sensitivity analyses and statistical analyses of time-series ocean
observations, we analyzed three relationships between salmon and sea nettles (Chrysaora
fuscescens): (1) the theoretical (modeled), indirect competition between jellyfish and juvenile
salmon for plankton resources, (2) the relation between salmon production indices (adult
returns to the Columbia River system) and summer sea nettle biomass during the year of
smolt entry to the ocean, and (3) the relation between juvenile salmon feeding intensity and
sea nettle biomass observed during pelagic surveys.

Model analyses of the effects of changes in sea nettle biomass on other groups in the
pelagic community were made with an ECOTRAN food web model of the Northern
California Current representing the period of 1999 — 2010 (Steele & Ruzicka 2011, Ruzicka et
al. 2012). Analyses were conducted to estimate changes in salmon productivity following a
doubling in jellyfish abundance due to increased jellyfish consumption of zooplankton
production and decreased energy available along trophic pathways (direct and indirect)
supporting fish production. Seasonal sea nettle and juvenile salmon abundances off
Washington and northern Oregon were obtained from pelagic trawl surveys along cross-
shelf transects between 44.6°N and 48.3°N during May, June, and September each year from
1999 - 2013 (Brodeur et al., 2005; Emmett et al., 2006). Salmon productivity was estimated
from adult salmon returns to the upper Columbia River system at Bonneville Dam
(www.cbr.washington.edu/dart/adult_annual.html). Smolt life-history and number of
winters spent at sea before returning to the Columbia River were extrapolated from annual



retrospective scale-aging observations made by the Columbia River Inter-Tribal Fish
Commission of returning adults (e.g., Kelsey et al. 2011). The relationship between juvenile
salmon feeding success and sea nettle biomass was examined by comparing Indices of
Feeding Intensity (Daly et al. 2009) and local jellyfish biomass at survey individual stations.

Results and Discussion
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Figure 1. Relationships between sea nettle biomass off the
Washington coast during September of the year of salmon
smolt entry to the ocean and subsequent adult salmon returns
to the upper Columbia River system. Years in parentheses are
the number of years (winters at sea) between smolt ocean entry

jellyfish biomasses of smolt ocean and adult salmon returns.

entry years were significantly

negative or several Columbia River salmon runs (Figure 1). This could be the apparent effect
of young salmon and jellyfish both responding to shared ocean conditions, but in the
opposite manner. However, juvenile salmon feeding success was also significantly lower at
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stations where sea nettle biomasses
were elevated (Figure 2).
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